Localization Operations
This guide covers robot localization procedures for the RCR Common Robotics Platform.
Overview
Localization is the process of determining the robot’s position and orientation within a known map. The system uses AMCL (Adaptive Monte Carlo Localization) to track the robot’s pose.
Prerequisites
Map of the environment available
LiDAR sensor functioning
IMU and odometry data available
Navigation stack configured
Localization Setup
1. Launch Localization
# Launch localization system
ros2 launch common_platform localization_launch.py
2. Verify Topics
# Check required topics
ros2 topic list | grep -E "(scan|odom|map|amcl)"
Expected topics:
/scan- LiDAR data/odom- Odometry data/map- Map data/amcl_pose- Localized pose
Initial Localization
1. Set Initial Pose
Using RViz:
Open RViz
Click “2D Pose Estimate”
Click and drag on map to set initial pose
Using Command Line:
# Set initial pose
ros2 topic pub /initialpose geometry_msgs/msg/PoseWithCovarianceStamped "{}"
2. Verify Localization
# Monitor pose estimate
ros2 topic echo /${ROS_NAME}/amcl_pose
# Check pose covariance
ros2 topic echo /${ROS_NAME}/amcl_pose | grep covariance
Localization Parameters
AMCL Configuration
Key parameters in nav2_params.yaml:
amcl:
ros__parameters:
# Particle filter parameters
min_particles: 500
max_particles: 2000
# Update parameters
update_min_d: 0.2
update_min_a: 0.5
# Laser model parameters
laser_max_range: 10.0
laser_min_range: 0.1
Tuning Guidelines
For Better Accuracy:
Increase particle count
Decrease update thresholds
Tune laser model parameters
For Better Performance:
Decrease particle count
Increase update thresholds
Optimize laser parameters
Localization Monitoring
1. Pose Quality
Check Covariance:
# Monitor pose covariance
ros2 topic echo /amcl_pose | grep covariance
Low covariance values indicate good localization.
2. Particle Cloud
Visualize in RViz:
Add “PoseArray” display
Set topic to
/particlecloudMonitor particle distribution
3. Localization Status
# Check localization status
ros2 topic echo /${ROS_NAME}/localization_status
Troubleshooting
Common Issues
Poor Localization:
Check map quality
Verify sensor data
Tune AMCL parameters
Check for dynamic obstacles
Localization Failures:
Verify initial pose
Check sensor connections
Review error logs
Test in known location
Drift Issues:
Check odometry accuracy
Verify IMU calibration
Review sensor fusion
Test on different surfaces
Diagnostic Commands
# Check sensor data quality
ros2 topic hz /${ROS_NAME}/scan
ros2 topic hz /${ROS_NAME}/odom
# Monitor localization performance
ros2 topic echo /${ROS_NAME}/amcl_pose
# Check for errors
ros2 log list
Best Practices
Environment Setup
Use high-quality maps
Ensure good LiDAR coverage
Minimize dynamic obstacles
Maintain consistent lighting
Operation
Set accurate initial pose
Monitor localization quality
Avoid areas with poor features
Use landmarks for verification
Maintenance
Regular sensor cleaning
Periodic recalibration
Map updates as needed
Performance monitoring
Advanced Localization
Multi-Hypothesis Tracking
Handle ambiguous situations
Maintain multiple hypotheses
Use additional sensors
Sensor Fusion
Combine multiple sensors
Use IMU for orientation
Integrate visual features
Dynamic Environments
Handle moving obstacles
Update maps in real-time
Use adaptive algorithms
For mapping procedures, see Mapping For path planning, see Path Planning For troubleshooting, see Troubleshooting