Custom Controllers

This guide covers advanced controller configuration and customization for the RCR Common Robotics Platform.

Overview

Custom controllers allow you to implement advanced control algorithms, optimize performance, and add new functionality to your robot.

Prerequisites

  • Understanding of control theory

  • Familiarity with ROS2 control

  • Knowledge of robot kinematics

  • Experience with C++ or Python

Controller Types

1. Motion Controllers

Differential Drive Controller:

  • Controls left and right wheels

  • Implements velocity commands

  • Handles odometry feedback

Omni-Drive Controller:

  • Controls multiple wheels

  • Implements holonomic motion

  • Advanced kinematics

2. Sensor Controllers

LiDAR Controller:

  • Manages LiDAR data

  • Implements filtering

  • Handles calibration

Camera Controller:

  • Manages camera data

  • Implements image processing

  • Handles calibration

Controller Development

1. Basic Controller Structure

C++ Controller:

#include <controller_interface/controller_interface.hpp>
#include <hardware_interface/types/hardware_interface_type_values.hpp>

class CustomController : public controller_interface::ControllerInterface
{
public:
  CustomController();
  ~CustomController();

  controller_interface::return_type init(
    const std::string & controller_name) override;

  controller_interface::return_type update() override;

private:
  // Controller implementation
};

Python Controller:

import rclpy
from controller_interface import ControllerInterface

class CustomController(ControllerInterface):
    def __init__(self):
        super().__init__()

    def init(self, controller_name):
        # Initialize controller
        pass

    def update(self):
        # Update controller
        pass

2. Controller Configuration

Controller Parameters:

custom_controller:
  ros__parameters:
    # Controller parameters
    update_rate: 100.0
    control_mode: velocity

    # PID parameters
    p_gain: 1.0
    i_gain: 0.0
    d_gain: 0.0

    # Safety parameters
    max_velocity: 1.0
    max_acceleration: 2.0

3. Controller Integration

Hardware Interface:

hardware:
  ros__parameters:
    joints:
      - left_wheel
      - right_wheel

    interfaces:
      - position
      - velocity
      - effort

Controller Manager:

controller_manager:
  ros__parameters:
    update_rate: 100

    controllers:
      custom_controller:
        type: custom_controller/CustomController

Advanced Control Algorithms

1. PID Control

PID Implementation:

class PIDController
{
public:
  PIDController(double p, double i, double d);
  double update(double error, double dt);

private:
  double p_gain_, i_gain_, d_gain_;
  double integral_, previous_error_;
};

PID Tuning:

  • Start with P gain only

  • Add I gain for steady-state error

  • Add D gain for stability

  • Tune for performance

2. Model Predictive Control

MPC Implementation:

  • Predict future behavior

  • Optimize control inputs

  • Handle constraints

  • Real-time optimization

3. Adaptive Control

Adaptive Algorithms:

  • Self-tuning controllers

  • Parameter estimation

  • Robust control

  • Learning control

Performance Optimization

1. Real-time Performance

Timing Requirements:

  • Control loop frequency

  • Latency constraints

  • Jitter minimization

  • Priority scheduling

Optimization Techniques:

  • Efficient algorithms

  • Memory management

  • CPU optimization

  • Real-time scheduling

2. Control Performance

Performance Metrics:

  • Tracking accuracy

  • Response time

  • Stability margins

  • Robustness

Optimization Methods:

  • Parameter tuning

  • Algorithm selection

  • Hardware optimization

  • System integration

Testing and Validation

1. Simulation Testing

Gazebo Simulation:

# Launch simulation
ros2 launch common_platform launch_sim.launch.py

# Test controller
ros2 run custom_controller test_controller

Controller Testing:

  • Unit tests

  • Integration tests

  • Performance tests

  • Safety tests

2. Hardware Testing

Safe Testing:

  • Start with low gains

  • Test in safe environment

  • Monitor system behavior

  • Have emergency stop ready

Validation Procedures:

  • Step response tests

  • Frequency response tests

  • Stability tests

  • Performance tests

Troubleshooting

Common Issues

Controller Not Starting:

  • Check configuration

  • Verify hardware interface

  • Check for errors

  • Review logs

Poor Performance:

  • Tune parameters

  • Check sensor data

  • Verify timing

  • Review algorithms

Instability:

  • Reduce gains

  • Check for delays

  • Verify system model

  • Review stability

Diagnostic Tools

Controller Monitoring:

# Monitor controller status
ros2 control list_controllers

# Check controller parameters
ros2 param list /controller_manager

# Monitor performance
ros2 run rqt_plot rqt_plot

Best Practices

Development

Code Quality:

  • Follow coding standards

  • Use version control

  • Document code

  • Test thoroughly

Safety:

  • Implement safety checks

  • Use appropriate limits

  • Handle failures gracefully

  • Test extensively

Deployment

Configuration Management:

  • Version control configurations

  • Document changes

  • Test in simulation first

  • Deploy gradually

Monitoring:

  • Monitor performance

  • Check for errors

  • Log important events

  • Maintain backups


For firmware updates, see Firmware Updates For troubleshooting, see Troubleshooting