Custom Controllers
This guide covers advanced controller configuration and customization for the RCR Common Robotics Platform.
Overview
Custom controllers allow you to implement advanced control algorithms, optimize performance, and add new functionality to your robot.
Prerequisites
Understanding of control theory
Familiarity with ROS2 control
Knowledge of robot kinematics
Experience with C++ or Python
Controller Types
1. Motion Controllers
Differential Drive Controller:
Controls left and right wheels
Implements velocity commands
Handles odometry feedback
Omni-Drive Controller:
Controls multiple wheels
Implements holonomic motion
Advanced kinematics
2. Sensor Controllers
LiDAR Controller:
Manages LiDAR data
Implements filtering
Handles calibration
Camera Controller:
Manages camera data
Implements image processing
Handles calibration
Controller Development
1. Basic Controller Structure
C++ Controller:
#include <controller_interface/controller_interface.hpp>
#include <hardware_interface/types/hardware_interface_type_values.hpp>
class CustomController : public controller_interface::ControllerInterface
{
public:
CustomController();
~CustomController();
controller_interface::return_type init(
const std::string & controller_name) override;
controller_interface::return_type update() override;
private:
// Controller implementation
};
Python Controller:
import rclpy
from controller_interface import ControllerInterface
class CustomController(ControllerInterface):
def __init__(self):
super().__init__()
def init(self, controller_name):
# Initialize controller
pass
def update(self):
# Update controller
pass
2. Controller Configuration
Controller Parameters:
custom_controller:
ros__parameters:
# Controller parameters
update_rate: 100.0
control_mode: velocity
# PID parameters
p_gain: 1.0
i_gain: 0.0
d_gain: 0.0
# Safety parameters
max_velocity: 1.0
max_acceleration: 2.0
3. Controller Integration
Hardware Interface:
hardware:
ros__parameters:
joints:
- left_wheel
- right_wheel
interfaces:
- position
- velocity
- effort
Controller Manager:
controller_manager:
ros__parameters:
update_rate: 100
controllers:
custom_controller:
type: custom_controller/CustomController
Advanced Control Algorithms
1. PID Control
PID Implementation:
class PIDController
{
public:
PIDController(double p, double i, double d);
double update(double error, double dt);
private:
double p_gain_, i_gain_, d_gain_;
double integral_, previous_error_;
};
PID Tuning:
Start with P gain only
Add I gain for steady-state error
Add D gain for stability
Tune for performance
2. Model Predictive Control
MPC Implementation:
Predict future behavior
Optimize control inputs
Handle constraints
Real-time optimization
3. Adaptive Control
Adaptive Algorithms:
Self-tuning controllers
Parameter estimation
Robust control
Learning control
Performance Optimization
1. Real-time Performance
Timing Requirements:
Control loop frequency
Latency constraints
Jitter minimization
Priority scheduling
Optimization Techniques:
Efficient algorithms
Memory management
CPU optimization
Real-time scheduling
2. Control Performance
Performance Metrics:
Tracking accuracy
Response time
Stability margins
Robustness
Optimization Methods:
Parameter tuning
Algorithm selection
Hardware optimization
System integration
Testing and Validation
1. Simulation Testing
Gazebo Simulation:
# Launch simulation
ros2 launch common_platform launch_sim.launch.py
# Test controller
ros2 run custom_controller test_controller
Controller Testing:
Unit tests
Integration tests
Performance tests
Safety tests
2. Hardware Testing
Safe Testing:
Start with low gains
Test in safe environment
Monitor system behavior
Have emergency stop ready
Validation Procedures:
Step response tests
Frequency response tests
Stability tests
Performance tests
Troubleshooting
Common Issues
Controller Not Starting:
Check configuration
Verify hardware interface
Check for errors
Review logs
Poor Performance:
Tune parameters
Check sensor data
Verify timing
Review algorithms
Instability:
Reduce gains
Check for delays
Verify system model
Review stability
Diagnostic Tools
Controller Monitoring:
# Monitor controller status
ros2 control list_controllers
# Check controller parameters
ros2 param list /controller_manager
# Monitor performance
ros2 run rqt_plot rqt_plot
Best Practices
Development
Code Quality:
Follow coding standards
Use version control
Document code
Test thoroughly
Safety:
Implement safety checks
Use appropriate limits
Handle failures gracefully
Test extensively
Deployment
Configuration Management:
Version control configurations
Document changes
Test in simulation first
Deploy gradually
Monitoring:
Monitor performance
Check for errors
Log important events
Maintain backups
For firmware updates, see Firmware Updates For troubleshooting, see Troubleshooting