IMU Operations
This guide covers IMU (Inertial Measurement Unit) operations, setup, and troubleshooting for the RCR Common Robotics Platform.
Overview
The robot uses an IMU for orientation sensing, motion detection, and navigation. The IMU provides acceleration, angular velocity, and orientation data.
IMU Specifications
Model: MPU9250
Accelerometer: ±16g range
Gyroscope: ±2000°/s range
Magnetometer: ±4800μT range
Interface: I2C
Update Rate: 100 Hz
IMU Setup
1. Hardware Connection
Physical Mounting
Mount IMU in stable location
Minimize vibration
Ensure proper orientation
Power Connection
Connect to robot power system
Verify voltage requirements (3.3V)
Check for proper grounding
Data Connection
Connect to I2C bus
Verify pull-up resistors
Test communication
2. Software Configuration
Launch IMU:
# Launch IMU node
ros2 launch common_platform imu.launch.py
Verify Data:
# Check IMU data
ros2 topic echo /${ROS_NAME}/imu/data
# Monitor data rate
ros2 topic hz /${ROS_NAME}/imu/data
IMU Calibration
1. Static Calibration
Calibration Process:
Place robot on level surface
Ensure no movement
Run calibration procedure
Save calibration parameters
Calibration Command:
# Run IMU calibration
ros2 run imu_calibration calibrate_imu
2. Dynamic Calibration
Motion Calibration:
Perform controlled movements
Calibrate gyroscope bias
Verify acceleration readings
Orientation Calibration:
Align with known orientation
Calibrate magnetometer
Verify heading accuracy
IMU Data Analysis
1. Data Structure
IMU Message:
std_msgs/Header header
geometry_msgs/Quaternion orientation
float64[9] orientation_covariance
geometry_msgs/Vector3 angular_velocity
float64[9] angular_velocity_covariance
geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance
2. Data Quality
Check Data Quality:
# Monitor IMU data
ros2 topic echo /imu/data
# Check for:
# - Stable orientation
# - Reasonable acceleration values
# - Consistent angular velocity
IMU Applications
1. Orientation Sensing
Quaternion Data:
Use for robot orientation
Implement orientation control
Monitor attitude changes
Euler Angles:
Convert for human readability
Use for control algorithms
Monitor pitch, roll, yaw
2. Motion Detection
Acceleration Data:
Detect motion changes
Implement motion control
Monitor for impacts
Angular Velocity:
Detect rotation
Implement rotation control
Monitor for spinning
Troubleshooting
Common Issues
No IMU Data:
Check I2C connection
Verify power supply
Check device address
Test with I2C tools
Poor Data Quality:
Check mounting stability
Verify calibration
Test in different environments
Check for interference
Drift Issues:
Recalibrate IMU
Check for temperature effects
Verify mounting
Test with known orientations
Diagnostic Commands
# Check I2C devices
i2cdetect -y 1
# Test I2C communication
i2cget -y 1 0x68 0x75
# Monitor data quality
ros2 topic echo /imu/data
ros2 topic hz /imu/data
Error Codes
Common Error Messages:
“Failed to open I2C device” - Check I2C connection
“No data received” - Check power and connections
“Invalid data” - Check for interference or damage
Maintenance
Regular Maintenance
Daily:
Visual inspection
Check for vibration
Verify data quality
Weekly:
Check mounting stability
Test calibration
Monitor performance
Monthly:
Full calibration check
Performance testing
Connection inspection
Cleaning Procedures
IMU Unit:
Power off robot
Clean mounting surface
Check for loose connections
Verify stability
Mounting Area:
Clean mounting surface
Check for loose connections
Verify stability
Performance Optimization
Data Processing
Filtering:
Remove noise from data
Implement low-pass filters
Smooth data for better performance
Sensor Fusion:
Combine with other sensors
Use Kalman filters
Improve accuracy
Parameter Tuning
IMU Parameters:
# In launch file
update_rate: 100
linear_acceleration_stddev: 0.01
angular_velocity_stddev: 0.01
Filter Parameters:
Adjust filter gains
Balance performance vs. accuracy
Consider computational load
Safety Considerations
Operating Safety
Handle with care during maintenance
Follow manufacturer guidelines
Consider temperature effects
Monitor for failures
Data Safety
Verify data accuracy
Handle sensor failures gracefully
Implement appropriate logging
Consider data validation
For LiDAR operations, see LiDAR Operations For camera operations, see Camera Operations For troubleshooting, see Troubleshooting